If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-40x=0
a = 21; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·21·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*21}=\frac{0}{42} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*21}=\frac{80}{42} =1+19/21 $
| p^2-2p-5.5=0 | | -20+7a=-7a+6(8a+8) | | 3x+7-4=2 | | 4.9x^2+10x-50=0 | | 11|x/4+11|=60 | | x+45x=90 | | 84=-1+8x | | -4+3y-2=0 | | 8=84+1x | | n^2-25n+45=0 | | 3.2/x=3.3/19 | | -2(6-5b)+3(1+b)=-9 | | n²-2n=24 | | 240+0.25x=470 | | 3.2/n=3.3/19 | | 7x+2÷3=4x-1 | | 10|m-6|=7 | | 1/8(3D-2)=5/12+5/8y | | (4/3)y=24 | | 11x=24+-11x | | 4(4+3p)-(p+1)=15 | | 7+3y-2=0 | | -3+9=-5x-1 | | 10+|m-6|=7 | | 10+|m-|=7 | | 4u^2+11u+6=0 | | E3x+2=1 | | -3(4x+6)-2(x-4)=-10 | | 2(5y-7)=10(y-3) | | 7n-1=-6+-2n | | -5(1+4a)+5(-6a-1)=40 | | w+1/4=-7/8 |